# **Abnormal Ear Development in Corn**



# **Osler Ortez**

Corn & Emerging Crops Dept. of Horticulture and Crop Science

**THE OHIO STATE UNIVERSITY** 

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

## December 2022 Indiana CCA Conference



#### Conclusions



## **PHASE III**

#### Survey, Farmer Fields

## **PHASE IV**

G x E x M Research



**Phase II** 

#### Reports of abnormal ears and yield losses in August 2016

Initially thought it was isolated to Nebraska

Additional **reports** from: **Texas Panhandle Eastern Colorado** Kansas lowa Illinois



#### Abnormal ears were **likely** the result of interactions among $\mathbf{G} \times \mathbf{E} \times \mathbf{M}$ ... but specific causes were yet to be studied! **Project Background**



More than **100 years** of **corn research**, abnormalities are not completely understood (Emerson, **1912**; Kempton, **1913**)...

# **Abnormal ears reduce yields...** Hence, affect productivity!





**Phase III** 

# What was being reported?



REVIEW 🖻 Open Access 💿 💽 🗐 🗐 😒

# Conditions potentially affecting corn ear formation, yield, and abnormal ears: A review

Osler A. Ortez 🗙, Anthony J. McMechan, Thomas Hoegemeyer, Ignacio A. Ciampitti, Robert L. Nielsen, Peter R. Thomison, Lori J. Abendroth, Roger W. Elmore

First published: 04 July 2022 | https://doi.org/10.1002/cft2.20173



Received: 14 January 2022 Accepted: 10 May 2022

DOI: 10.1002/cft2.20173

REVIEW

**Crop Management** 

#### Conditions potentially affecting corn ear formation, yield, and abnormal ears: A review

Osler A. Ortez<sup>1,5</sup> | Ar Ignacio A. Ciampitti<sup>3</sup> | Lori J. Abendroth<sup>6</sup> |

Anthony J. McMechan<sup>2</sup> Robert L. Nielsen<sup>4</sup> Roger W. Elmore<sup>1</sup> Thomas Hoegemeyer<sup>1</sup> Peter R. Thomison<sup>5</sup>

Crop, Forage & Turfgrass Management

<sup>1</sup>Dep. of Agronomy and Horticulture, Univ. of Nebraska-Lincoln, Lincoln, NE 68583, USA

<sup>2</sup>Dep. of Entomology, Univ. of Nebraska-Lincoln, Lincoln, NE 68583, USA

<sup>3</sup>Dep. of Agronomy, Kansas State Univ., Manhattan, KS 66506, USA

<sup>4</sup>Dep. of Agronomy, Purdue Univ., West Lafayette, IN 47907, USA

<sup>5</sup>Dep. of Horticulture and Crop Science, Ohio State Univ., Columbus, OH 43210, USA

<sup>6</sup>Agricultural Research Service, USDA, Columbia, MO 65211, USA

#### Correspondence

Osler Ortez, current address, Dep. of Horticulture and Crop Science, College of Food, Agriculture, and Environmental Sciences, Ohio State Univ., Columbus, OH 43210, USA.

Email: oortez94@hotmail.com

Assigned to Associate Editor Brett Allen.

#### Abstract

Abnormal ear development in corn (Zea mays L.) has been reported for more than 100 years. More recently, in 2016, widespread abnormal multiple ears per stalk node (herein termed as multi-ears), barbell ears, and short husks were reported in cornfields located in the western and central Corn Belt (Illinois, Iowa, Nebraska, and Kansas), Eastern Colorado, and the Texas Panhandle region in the United States. Little was known about the underlying causes of these abnormalities. A literature review examining conditions potentially affecting corn ear formation, yield, and abnormal ears was conducted. Several abnormal ear symptoms appear to be formed by stress conditions such as extreme weather, limited solar radiation, and responses to plant growth regulators. The accumulation of these effects can result in the abortion of primary ears and the development of secondary abnormal ears, which has been a hypothesis for the last 15 years. Whether or not primary ear abortion is one of the factors for abnormal ears remains a valid question. Abnormal ears can be understood as the result of an "expression triangle": susceptible genetics, conducive environmental conditions, and unfavorable management practices. Together, these factors can interact and cause abnormal ears and lower yields. Active knowledge gaps include the environmental and physiological pathways to abnormal ears, their impact on grain quality and yield, their effect on other processes such as dry-down and harvest ease, and an in-depth understanding of differing genetics, environment, and management.

#### Open Access: https://doi.org/10.1002/cft2.20173

#### Rationale

- Need for **better understanding** of abnormal ears
- Several factors potentially affect abnormal ears

#### **Objectives**

 Identify environmental and physiological factors that can affect ear formation, yield, and abnormal ears

#### Methods

- Review of literature on
  - o Extreme weather
  - Solar radiation availability
  - Plant growth **regulators**
  - Primary ear **abortion**

#### Nodal root system, V9 plant



Ortez et al. (2022a), Crop, Forage & Turfgrass Management

#### **Phase IV**

#### Conclusions



Approximately 70 (below and above beginning with the 5<sup>4</sup> by genetics

> File based of the plant (roots per

test Filo<sup>31,9</sup> t density then it ated in dooth, file at



Hgure 8. Plant dissected lengthwise through the nodal root system. Each not originates from a specific stalk node. The seminal cost system is visible by the location of the depleted seed.





#### **Dissected V9 plant**

6

|                                    | Background                                                                                                              |                                                     | Phase I                               |          | Phase II |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|----------|----------|--|
| • Axill<br>ears<br>(i.e.,<br>of th | ary <b>ear meristems</b> ,<br><b>or tillers</b> , are initiat<br><b>from base to tip)</b> a<br>he plant's stalk (Lejeur | which po<br>ted acrop<br>t every no<br>ne & Bernier | tentially<br>etally<br>ode<br>, 1996) | initiate |          |  |
|                                    | Initiated ears at even<br>of the plant's st<br>upperm                                                                   | ery above<br>talk excep<br>ost nodes                | ground r<br>ot for the<br>5.          | node     |          |  |
| CFAES Orte                         | z et al. (2022a), <i>Crop,</i> 1                                                                                        | Forage & 1                                          | Turfgrass I                           | Managen  | nent     |  |

Phase III

#### Phase IV

#### Conclusions



### Dissected plant at V18 stage

| Background | Phase I | Phase II |
|------------|---------|----------|
|            |         |          |

- Abnormal ears can be formed due to **stress**:  $\bullet$ biotic or abiotic
- Understanding of **when stress** occurs relative to the  $\bullet$ formation of ears and yield is necessary





Ortez et al. (2022a), Crop, Forage & Turfgrass Management

#### **Extreme weather**:

- Widespread drought in 2012 caused a 23% loss of production in the US, relative to the yield trends (USDA-NASS, 2013).
- Abortion of primary ear, induced by cold treatment of 10°C (50°F) for 5-7 days right before tassel initiation, ~V5 stage (Lejeune and Bernier, 1996).
- **Stress sources**: cold, flood, drought, heat, wind, hail, freeze (Foyer et al., 1994, Perata & Alpi, 1993).
- **Hybrids** differ in their response to stress.

#### **Solar radiation:**

- **Light availability** is critical for corn yield (Hashemi-Dezfouli & Herbert, 1992; Liu & Tollenaar, 2009; Reed et al., 1988)
- Increased **light interception** in the lower plant canopy increased Ο the number of harvestable ears per plant (Prine, 1971).
- **Lower light** availability decreased grain, stover, total protein, and total oil (Earley et al., 1966).
- A 60, 70, 80, and 90% shading between 17 July and 7 August produced barbell-shaped ears and arrested ears in Illinois (Earley et al., 1967).

#### Ortez et al. (2022a), Crop, Forage & Turfgrass Management

#### **Conclusions**







#### Background







#### **Plant growth regulators**:

- Plant hormones control several aspects of plant growth (Ross& O'Neill, 2001):
- Inhibitors and promoters, flowering & axillary meristems (Cline, 1994; Lejeune et al., 1994; Mok, 1994). Plant growth regulators, abscisic acid, and ethylene are involved in plants' stress: Auxinic compounds applied at the floral transition stage (~V4 and V6), ear shoot abortion increases (Lejeune et al., 1998).
- **Ethephon** (ethylene-based growth regulator), decreased kernel number (Cox & Andrade, 1988). Ο Ethylene and alkylphenol ethoxylate (APE) share ethylene oxide as a biological metabolite Ο (Dodds & Hall, 1982; Jones & Westmoreland, 1998; Ying et al., 2002)
- - APE is a common component of **nonionic surfactant (NIS)** (Schmitz et al., 2011).
- Foliar application of **NIS resulted in arrested ear development** when applied Ο at the V10 to V14 development stages (Schmitzet al., 2011).
- Plant growth regulators are essential in determining plants' responses to stress, ear formation, yield, and primary ear abortion in corn.

Ortez et al. (2022a), Crop, Forage & Turfgrass Management

## These effects can result in the **abortion of primary ears** and development of abnormal secondary ears... Still a hypothesis!

- Key Findings:
  - Extreme weather, low solar radiation, and growth regulators can be some of the causes.
  - **Primary ear abortion** correlate with the occurrence of abnormal ears.
  - Factors affecting corn ear formation and abnormal ears result in **lower yields**.
  - Genetic × environment × management interactions affect ear formation, yield, and abnormal ears.

Ortez et al. (2022a), Crop, Forage & Turfgrass Management

#### **Phase III**

#### **Phase IV**

#### Conclusions







| Background | Phase I | Phase II |
|------------|---------|----------|
|            |         |          |





REVIEW 🖻 Open Access 💿 🗊 🗐 😒

#### Abnormal ear development in corn: A review

Osler A. Ortez 🔀, Anthony J. McMechan, Thomas Hoegemeyer, Ignacio A. Ciampitti, Robert Nielsen, Peter R. Thomison, Roger W. Elmore

First published: 18 January 2022 | https://doi.org/10.1002/agj2.20986



Received: 12 August 2021

Accepted: 6 December 2021 Published online: 21 February 2022

DOI: 10.1002/agj2.20986

REVIEW

**Crop Ecology and Physiology** 

Agronomy Journal

#### Abnormal ear development in corn: A review

| Osler A. Ortez <sup>1,2</sup> O     | Anthony J. McMechan <sup>3</sup> | Thomas Hoegemeyer              | 0                            |
|-------------------------------------|----------------------------------|--------------------------------|------------------------------|
| Ignacio A. Ciampitti <sup>4</sup> © | Robert Nielsen <sup>5</sup> 😳    | Peter R. Thomison <sup>2</sup> | Roger W. Elmore <sup>1</sup> |

<sup>1</sup> Dep. of Agronomy and Horticulture, Univ. of Nebraska-Lincoln, Lincoln, NE 68583, USA

<sup>2</sup> Dep. of Horticulture and Crop Science, The Ohio State Univ., Columbus, OH 43210, USA

<sup>3</sup> Eastern Nebraska Research and Extension Center, Univ. of Nebraska-Lincoln, Ithaca, NE 68033, USA

<sup>4</sup> Dep. of Agronomy, Kansas State Univ., Manhattan, KS 66506, USA

<sup>5</sup> Dep. of Agronomy, Purdue Univ., West Lafayette, IN 47907, USA

#### Correspondence

Osler A. Ortez, Dep. of Agronomy and Horticulture, Univ. of Nebraska-Lincoln, Lincoln, NE 68583, USA; current address: Dep. of Horticulture and Crop Science, The Ohio State Univ., Columbus, OH43210, USA. Email: oortez94@hotmail.com

Assigned to Associate Editor Hanna Poffenbarger.

#### Abstract

Intensive study for more than 100 yr has resulted in a good understanding of corn's (Zea mays L.) growth and development. However, abnormal development of ears in corn was reported in several U.S. states, including Texas, Colorado, Kansas, Nebraska, Iowa, and Illinois, during 2016, stretching our understanding. A comprehensive review of the literature was conducted to identify abnormal ears' symptoms, causes, and timing of development. This study aimed to (a) describe and summarize previously reported ear symptoms, (b) document recent widespread symptoms of major concern, and (c) describe our current understanding of the potential cause(s) and expected development timing for abnormal ears. In total, 10 previously reported symptoms of corn ears were found, including tassel, fasciated, arrested, pinched, blunt, silk-balled, incomplete kernel set, banana-shaped, zipper, and tipped-back. Three additional recent widespread symptoms of major concern associated with significant yield reduction across a wide area in 2016 were described: multi-ears, barbell-ears, and short-husk ears. The information available on several of the symptoms was limited, and the specific causes were unknown, highlighting the need for more research in this area. Despite this and based on existing knowledge, possible causal factors and postulated development timing (i.e., when the stress may have occurred) are presented for all symptoms. Abnormal ear development can be seen as the response to complex interactions among genetics, environment, and management practices. Ear abnormalities are detrimental to grain yield and quality, and their mitigation is imperative to efficient corn systems, crop resiliency, and sustainability.

#### Open Access: https://doi.org/10.1002/agj2.20986

#### Rationale

- Several abnormal symptoms reported in previous years
- Abnormal ear **reports**, 2016

## Objectives

- Describe and summarize **previously reported** ear symptoms
- Document recent widespread symptoms of major concern

#### Methods

- Comprehensive **review** of the literature
- Compiled extension & peer-reviewed (few) reports



#### **Phase IV**



|                      | Background              | $\geq$ | Phase I                                                                | Phase II                                |                      | Phase III                        | $\geq$                                   | Phase IV                          | Conclusions                                                                      |  |
|----------------------|-------------------------|--------|------------------------------------------------------------------------|-----------------------------------------|----------------------|----------------------------------|------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------|--|
|                      | Ear abnormalities       |        | Possible causal factors                                                |                                         | Postulated d         | Postulated development timing    |                                          |                                   |                                                                                  |  |
|                      |                         |        | Pr                                                                     | eviously repor                          | rted sy              | mptoms -                         |                                          |                                   |                                                                                  |  |
|                      | 1. Tassel ears          |        | Lowe<br>{                                                              | er populations, er<br>growing point dan | nd or bo<br>nage, ge | rder rows,<br>enetics            |                                          | Initiation and on apical merister | Initiation and differentiation of tiller's apical meristem into floral structure |  |
|                      | 2. Fasciated ears       |        | Specific mutants (i.e., genetics), cold temperatures                   |                                         |                      | Ear initiatio                    | n and development,<br>V4 to V7           |                                   |                                                                                  |  |
|                      | 3. Arrested ears        |        | Non-ionic Surfactant (NIS) formulations                                |                                         |                      | Ear size de<br>V6 to V1          | termination period,<br>.2; and up to V16 |                                   |                                                                                  |  |
|                      | 4. Pinched ears         |        | Cell division inhibitors,<br>e.g., sulfonylurea herbicides             |                                         | Ear size de          | termination period,<br>/6 to V12 |                                          |                                   |                                                                                  |  |
|                      | 5. Blunt ears           |        | Plant stressors (e.g., chemicals or environment), genetics, management |                                         | Ear size de          | termination period,<br>/6 to V12 |                                          |                                   |                                                                                  |  |
|                      | 6. Silk-balled ears     |        | Cold temperatures, drought, genetics                                   |                                         | Silk                 | elongation,<br>/12 to R1         |                                          |                                   |                                                                                  |  |
|                      | 7 Incomplete kernel set |        | Silks damage, d                                                        | drought, high tem                       | perature             | es, pollinatior                  | n issues,                                | Pollina                           | ation, VT or R1;                                                                 |  |
|                      |                         |        | phosphoru                                                              | us shortages, herb                      | icide inj            | ury, cloudy d                    | ays                                      | and early repro                   | ductive stages, R1 to R3                                                         |  |
|                      | 8. Banana ears          |        | Severe weather, chemical applications,                                 |                                         |                      | Pollina                          | ation, VT or R1;                         |                                   |                                                                                  |  |
|                      |                         |        | heat or drought, stink bug injury                                      |                                         |                      | and early repro                  | ductive stages, R1 to R3                 |                                   |                                                                                  |  |
|                      | 9 <b>Zinner ears</b>    |        | Higher s                                                               | seeding rates, dro                      | ught str             | ess, genetics,                   | ,                                        | Pollina                           | ation, VT or R1;                                                                 |  |
|                      |                         |        | C                                                                      | defoliation, deficie                    | ent polli            | nation                           |                                          | and early repro                   | ductive stages, R1 to R3                                                         |  |
|                      | 10 Tinned-back cars     |        | Pollen and silk a                                                      | availability, kernel                    | abortio              | on, cloudy day                   | /s, heat,                                | Pollina                           | ation, VT or R1;                                                                 |  |
| TO. Tipped-back ears |                         |        | drou                                                                   | ught, genetics, hig                     | her see              | ding rates                       |                                          | and early repro                   | ductive stages, R1 to R3                                                         |  |



| Phase I |  |
|---------|--|
|---------|--|

#### Background

#### **Phase I**



#### Photo: O. Ortez



Photo: B. Nielsen

#### **TASSEL EAR**

Ears at the top of tiller plants in place of tassels **POSSIBLE FACTORS** 

genetics (i.e., hybrid specific) **EXPECTED TIMING** 





Ortez et al. (2022b), Agronomy Journal

Photos: O. Ortez

- Lower populations, end or border rows, growing point damage,
- Initiation and differentiation of tiller's apical meristem into floral structure

#### **FASCIATED EAR**

- **Increased and non-organized kernel rows POSSIBLE FACTORS**
- Specific mutants (i.e., genetics), cold temperatures **EXPECTED TIMING**
- Ear initiation and development, V4 to V7

Background

**Phase I** 



#### Photo: O. Ortez



#### Photo: B. Nielsen

#### **ARRESTED EAR**

Ear development arrested or stopped prematurely **POSSIBLE FACTORS** 

**Non-ionic Surfactant (NIS) formulations EXPECTED TIMING** 

Ear size determination period, V6 to V12; and up to V16

# **PINCHED EAR POSSIBLE FACTORS EXPECTED TIMING**

Abrupt change to fewer kernel rows in the ear

Cell division inhibitors, e.g., sulfonylurea herbicides

Ear size determination period, V6 to V12

Ortez et al. (2022b), Agronomy Journal



#### Photos: A. Perdomo



## **BLUNT EAR**

# Noticeably shorter and stunted ears **POSSIBLE FACTORS**

Plant stressors (e.g., chemicals or environment), genetics, management EXPECTED TIMING

Ear size determination period, V6 to V12



Photo: J. Hardwick

Ortez et al. (2022b), Agronomy Journal

Photos: B. Nielsen

**Phase III** 

#### Phase IV

#### Conclusions

#### **SILK-BALLED EAR**

Silks fail to elongate toward the ear tip properly **POSSIBLE FACTORS** 

Cold temperatures, drought, genetics **EXPECTED TIMING** 

Silk elongation, V12 to R1

#### **Phase I**







Photo: O. Ortez

**INCOMPLETE KERNEL SET** 

**POSSIBLE FACTORS EXPECTED TIMING** 

#### **BANANA EAR**

**Curvature of the cob toward a damaged side of the ear POSSIBLE FACTORS** 

> Severe weather, chemical applications, heat or drought, stink bug injury

#### **EXPECTED TIMING**

Pollination, VT or R1; and early reproductive stages, R1 to R3



- Poor or scattered kernel set in the ear
- Silks damage, drought, high temperatures, pollination issues, phosphorus deficiency, herbicide injury, cloudy days
- Pollination, VT or R1; and early reproductive stages, R1 to R3



Photos: O. Ortez

Background

**Phase I** 

Phase II



Photo: O. Ortez

**ZIPPER EAR POSSIBLE FACTORS EXPECTED TIMING** 

#### **TIPPED-BACK EAR**

Missing kernels at the tip of the ear **POSSIBLE FACTORS** 

Pollen and silk availability, kernel abortion, cloudy days, heat, drought, genetics, higher seeding rates **EXPECTED TIMING** 

Pollination, VT or R1; and early reproductive stages, R1 to R3

Ortez et al. (2022b), Agronomy Journal

## Ears with missing kernel rows

- Higher seeding rates, drought stress, genetics,
- defoliation, deficient pollination

Pollination, VT or R1; and early reproductive stages, R1 to R3



Photos: O. Ortez

| Background | Phase I | Phase II |  |
|------------|---------|----------|--|
|            |         |          |  |

| Ear abnormalities      | Possible causal factors                                                                                                                | Postulated development timing                                     |  |  |  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
|                        | Recent widespread symptoms of major concern                                                                                            |                                                                   |  |  |  |  |  |  |
| 1. Multi-ears per node | Environmental stress (e.g., cold), low seeding rates, genetics, damage to primary ear                                                  | After ear initiation (V4 to V6) and before pollination (VT or R1) |  |  |  |  |  |  |
| 2. Barbell-ears        | Temperature stress, limited solar radiation, ethylene,<br>hormones, chemical applications, genetics, damage to<br>primary ear          | During ear size determination period,<br>V6 to V12; and up to R1  |  |  |  |  |  |  |
| 3. Short-husk ears     | Short term stress, e.g., heat or drought followed by cooler<br>temperatures and precipitation, high-speed winds or<br>storms, genetics | Close to tasseling and pollination,<br>V18 to R1                  |  |  |  |  |  |  |



Background

## **MULTI-EAR**

Phase II

## Multiple ears at individual stalk nodes or same ear shank



**Phase I** 





# Photo: B. Nielsen **EXPECTED TIMING**

#### **POSSIBLE FACTORS**

**Environmental stress (e.g., cold),** low seeding rates, genetics, damage to primary ear





Photos: O. Ortez



After ear initiation (V4 to V6) and before pollination (VT or R1)

Phase II

## **BARBELL-EAR** Missing kernels and diameter decrease in the cob



**Phase I** 



## **POSSIBLE FACTORS**

**Temperature stress, limited solar** radiation, ethylene, hormones, chemical applications, genetics, damage to primary ear







Photos: O. Ortez

## **EXPECTED TIMING**

**During ear size** determination period, V6 to V12; and up to R1 Phase II

Shortened husk leaves with ears protruding beyond the husks

**Phase I** 











#### **POSSIBLE FACTORS**

Short term stress, e.g., heat or drought followed by cooler temperatures and precipitation, highspeed winds or storms, genetics





Photos: O. Ortez

## **EXPECTED TIMING Close to tasseling and** pollination, V18 to R1

## *Key Findings:*

- Abnormal ears are a likely response to **G×E×M interactions**. ullet
- Characterized ten previously reported abnormality symptoms  $\bullet$ discussed.
- Characterized three recent widespread symptoms of major concern  $\bullet$ associated with lower yields.
- Abnormal ears can reduce grain yield and quality. ullet
- The understanding and mitigation of abnormal ears are lacksquareimperative for sustainable agriculture.



#### **Phase IV**





| Background                                                                              |                             | Phase I           | Phase II             | Phase III                                                                                                                                                                                                                                                                                                                | Phase IV                                                                                                                                                                                           | > (                                                                                                  |
|-----------------------------------------------------------------------------------------|-----------------------------|-------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Agrosystems, Geosciences<br>& Environment                                               | OPEN<br>ACCESS              |                   |                      | Received: 19 August 2021 Accepted: 17 Decemb<br>DOI: 10.1002/agg2.20242<br>ORIGINAL RESEARCH ART                                                                                                                                                                                                                         | er 2021<br>Agrosys                                                                                                                                                                                 | stems, Geosciences &                                                                                 |
| ORIGINAL RESEARCH ARTICLE 🛛 🔂 Open A                                                    | ccess 💿 🛈                   |                   |                      | Agrosystems<br>Abnormal ear devel                                                                                                                                                                                                                                                                                        | opment in corn: A field                                                                                                                                                                            | survey                                                                                               |
| Abnormal ear developmen<br>Osler A. Ortez 🔍, Anthony J. McMechan 🔀<br>Roger W. Elmore 🐋 | nt in corr<br>(, Thomas Hoe | n: A field survey | Tamra Jackson-Ziems, | Osler A. Ortez <sup>1</sup> Antho<br>Jennifer Rees <sup>3</sup> Tamra Ja                                                                                                                                                                                                                                                 | ny J. McMechan <sup>2</sup>                                                                                                                                                                        | begemeyer <sup>1</sup> ©<br>ore <sup>1</sup> ©                                                       |
| First published: 01 February 2022   https                                               | ://doi.org/10.              | 1002/agg2.20242   |                      | <ol> <li><sup>1</sup> Dep. of Agronomy and Horticulture, Univ.<br/>of Nebraska-Lincoln, Lincoln, NE 68583,<br/>USA</li> <li><sup>2</sup> Eastern Nebraska Research and Extension<br/>Center, Univ. of Nebraska-Lincoln, Lincoln,<br/>NE 68033, USA</li> <li><sup>3</sup> Institute of Agriculture and Natural</li> </ol> | Abstract<br>In July of 2016, abnormal ear development<br>tiple ears per node herein termed as multi-e<br>eral cornfields that extended from the Texa<br>through Kansas, Nebraska, Iowa, and Illing | in corn ( <i>Zea mays</i> )<br>ears, and short-husk<br>is Panhandle to east<br>ois. Field surveys we |

Resources, Univ. of Nebraska-Lincoln, Lincoln, NE 68583, USA

USA

#### Correspondence

Osler A. Ortez and Roger W. Elmore, Dep. of Agronomy and Horticulture, Univ. of Nebraska-Lincoln, Lincoln, NE 68583, USA. Anthony J. McMechan, Eastern Nebraska Research and Extension Center, Univ. of Nebraska-Lincoln, Lincoln, NE 68033, USA. Email: oortez94@hotmail.com, roger.elmore@unl.edu, justin.mcmechan@unl.edu

Assigned to Associate Editor Daryl B. Arnall.



nvironment ACCESS

<sup>4</sup> Dep. of Plant Pathology, Univ. of Nebraska-Lincoln, Lincoln, NE 68503,

L.) (barbell-ears, mul-(s) was reported in sevtern Colorado and East ere conducted to study these ear abnormalities. Affected and unaffected plants were sampled from 15 farmer fields located in central and eastern Nebraska. Each plant was evaluated for ear type, ear placement, internode length, and grain yield. Along with plant evaluations, management practices and weather information were collected from the surveyed fields. Of the 15 surveyed fields, nine were grouped as affected (more than 10% abnormalities), and six were grouped as checks (<10% abnormalities). Affected fields averaged 26% of abnormalities, whereas check fields averaged only 4%. Ear abnormalities occurred on ears that seemed to be placed lower on plants relative to normal ears. Plants with abnormal ears had yield reductions between 35 and 91%, compared to plants with normal ears. Findings suggested that ear abnormalities may be a cumulative result from the classic genetic (hybrid-specific), environmental (stress factors), and management interactions. The study of underlying causes for abnormal ear development in corn is imperative for understanding the likelihood of future events occurring and providing critical information to potentially manage and mitigate these issues.

#### Open Access: https://doi.org/10.1002/agg2.20242

## Rationale

- Abnormal ears in farmer fields (2016): multi-ears, barbell-ears, short-husks
- Texas Panhandle to eastern Colorado and east through Kansas, Nebraska, Iowa, and Illinois

#### **Objectives**

- Conducted field surveys to study:
  - Frequency and distribution
  - Ear classification and symptoms
  - Effect on grain yields

Ortez et al. (2022c), Agrosystems, Geosciences & Environment





CFAES

Ortez et al. (2022c), Agrosystems, Geosciences & Environment

## Findings, field survey (1,259 plant samples)

#### **Ear Types**



#### **Ear Placement**



#### Up to 49% abnormal ears for a given field, 22% overall

Lower ear placement for abnormal ears



Ortez et al. (2022c), Agrosystems, Geosciences & Environment

#### **Grain Yield**

# Lower yield per plant for abnormal ears, 35 to 91% losses

## Key Findings:

- Affected fields averaged 26% abnormal ears, up to 49% in a given field.
- Abnormal ears **reduced yield**, between **35 and 91%** relative to normal ears.
- Abnormal ear **placement seemed to be lower** compared to normal ears.
- Ear abnormalities may be the **cumulative result** of classic **G×E×M** interactions.



#### **Phase IV**

#### Conclusions







# GENETICS ENVIRONMENT Image: Constraint of the second se





| Phase III |
|-----------|
|-----------|

## Hybrids, Environments, & Seeding Rates

#### **Objectives**

- Study hybrids, environments, and seeding rates lacksquare
- Determine the **distribution of ear types**  $\bullet$
- Compare **normal vs. abnormal** ear's heights



| Phase III | Phase IV | Conclusions |
|-----------|----------|-------------|
|           |          |             |



**Industry Fields (4):** 

## Hybrids, Environments, & Seeding Rates (63,500 plants)

| Label     | Factor                              | Grain Yield |
|-----------|-------------------------------------|-------------|
|           |                                     | P value     |
| G         | Hybrid                              | <.0001      |
| E         | Environment                         | <.0001      |
| М         | Seeding Rate                        | <.0001      |
| G × E     | Hybrid × Environment                | <.0001      |
| G×M       | Hybrid × Seeding Rate               | <.0001      |
| E×M       | Environment × Seeding Rate          | <.0001      |
| G × E × M | Hybrid × Environment x Seeding Rate | 0.0314      |





| Abnormal Ears, | Ear Heights,     |
|----------------|------------------|
| Percentage (%) | centimeters (cm) |
| P value        | P value          |
| <.0001         | <.0001           |
| 0.0012         | <.0001           |
| 0.1057         | <.0001           |
| <.0001         | <.0001           |
| <.0001         | 0.1841           |
| 0.6831         | 0.2501           |
| <.0001         | 0.9216           |



Background

Decrease

+

Increase

Phase I

**Phase II** 



Phase III

Phase IV

Conclusions

| ntage (     | %)            |                |                |         |           |        |       |  |
|-------------|---------------|----------------|----------------|---------|-----------|--------|-------|--|
| )157        | P0339         | P0801          | <b>P0801</b> † | P0832   | P1311     | P1311† | P1370 |  |
| Filley 2019 |               |                |                |         |           |        |       |  |
|             |               | 5.4Ab          | 9.8Ab          |         |           |        |       |  |
|             |               | 10.9Ab         | 11.6Ab         |         |           |        |       |  |
|             |               | 28.1Aa         | 23.2Aab        |         |           |        |       |  |
|             |               | 26.9Aa         | 28.1Aa         |         |           |        |       |  |
|             |               | 40.3Aa         | <b>3</b> 4.5Aa |         |           |        |       |  |
| _           |               | _              | Hooper         | • 2019  | _         | _      |       |  |
| .9Aa        | 6.0Bab        | 8.2Bc          | 3.7Bc          |         | 1.8Bbc    | 1.0Ba  |       |  |
| 0Aab        | 13.6Aa        | 7.9Ac          | 11.2Abc        |         | 1.4Ac     | 0.0Aa  |       |  |
| 9Bab        | 5.8CDab       | 33.0Ab         | 15.6BCb        |         | 9.6BCDabc | 3.6Da  |       |  |
| 2Bbc        | 7.7Bab        | 39.6Aab        | 36.4Aa         |         | 12.3Bab   | 7.4Ba  |       |  |
| BCc         | <b>4</b> .9Cb | <b>5</b> 4.1Aa | 42.4Aa         |         | 14.4Ba    | 13.8Ba |       |  |
|             |               |                | Lawrenc        | ce 2019 |           |        |       |  |
| .3Aa        |               | 12.0Bb         | 6.2Bb          |         |           |        |       |  |
| .1Ab        |               | 11.5ABb        | 6.0Bb          |         |           |        |       |  |
| .0Ab        |               | 15.8ABb        | 15.5ABab       |         |           |        |       |  |
| BCc         |               | 20.9Aab        | 22.6Aa         |         |           |        |       |  |
| 6BCc        |               | <b>2</b> 9.7Aa | 25.6Aa         |         |           |        |       |  |
| York 2019   |               |                |                |         |           |        |       |  |
| .8Aa        |               | 3.6Bb          | 2.8Bd          |         |           |        |       |  |
| 0Aab        |               | 4.9Bb          | 11.9ABcd       |         |           |        |       |  |
| 2Abc        |               | 14.8Ab         | 22.0Abc        |         |           |        |       |  |
| 2BCc        |               | 41.4Aa         | 29.8Aab        |         |           |        |       |  |
| 9Bbc        |               | 34.7Aa         | 41.7Aa         |         |           |        |       |  |

## Hybrids, Environments, & <u>Seeding Rates</u> (63,500 plants)

- G × E × M interactions
- More abnormal ears in 2019 (~11%), compared to 2018 (~5%)  $\bullet$
- Yield range: 68 to 319 Bu/Ac; higher yields, fewer abnormalities
- Variable **hybrid** response to **seeding rates (+/-)** •
- Hybrid selection & optimum seeding rates could mitigate abnormal ears  $\bullet$
- In most cases, **abnormal ears had lower heights** lacksquare

Ortez et al., under revision, Agronomy Journal





#### Rationale

Abnormal ears as a **likely** result of **G** × **E** × **M** 

#### **Objectives**

- Study hybrids, environments, and planting dates
- Determine the **distribution of ear types**
- Compare **normal vs. abnormal** ear heights

#### **Methods**

- Six **environments** (two fields, three years)
- Six hybrids
- Four **planting dates**
- **RCBD**, with split-plots





**Phase II** 

| P | hase III |
|---|----------|
|   |          |

# UNL Fields (2):

2016 issue reports

#### Eastern Nebraska

## Hybrids, Environments, & Planting Dates (59,200 plants)

| Label     | Factor Tested                        | Grain Yield |  |
|-----------|--------------------------------------|-------------|--|
|           |                                      | P value     |  |
| G         | Hybrid                               | <.0001      |  |
| E         | Environment                          | <.0001      |  |
| Μ         | Planting Date                        | <.0001      |  |
| G × E     | Hybrid × Environment                 | <.0001      |  |
| G × M     | Hybrid × Planting Date               | 0.1345      |  |
| E×M       | Environment × Planting Date          | <.0001      |  |
| G × E × M | Hybrid × Environment × Planting Date | 0.0032      |  |





Phase IV

| Abnormal Ears, | Ear Heights,     |
|----------------|------------------|
| Percentage (%) | centimeters (cm) |
| P value        | P value          |
| <.0001         | <.0001           |
| <.0001         | <.0001           |
| 0.0037         | <.0001           |
| <.0001         | <.0001           |
| 0.0201         | 0.5179           |
| 0.0006         | <.0001           |
| <.0001         | <.0001           |



Phase II





Decrease

÷

Increase

Ortez et al., *in preparation* 

| ntage (%) |               |         |       |                |       |  |  |
|-----------|---------------|---------|-------|----------------|-------|--|--|
| 57        | P0339         | P0801   | P0832 | P1311          | P1370 |  |  |
| SCAL 2018 |               |         |       |                |       |  |  |
| 3bc       | <b>7</b> .4Ba | 21.1Aa  |       | <b>5</b> .1Ba  |       |  |  |
| Ab        | 3.9BCab       | 14.8Aab |       | 4.7Ba          |       |  |  |
| BCc       | 5.4ABab       | 10.8Ab  |       | 2.3BCab        |       |  |  |
| 2Aa       | 2.9Cb         | 9.8Bb   |       | 1.3Cb          |       |  |  |
| SCAL 2019 |               |         |       |                |       |  |  |
| 5Aa       | 0.7Cb         |         |       | 0.7Cb          |       |  |  |
| )Ab       | 1.5BCab       |         |       | 0.5Cb          |       |  |  |
| Ab        | 3.8BCa        |         |       | 2.6BCb         |       |  |  |
| 5Ab       | ▼4.1BCa       |         |       | <b>1</b> 3.8Aa |       |  |  |
| SCAL 2020 |               |         |       |                |       |  |  |
| Ac        | 3.2Ab         | 1.9Ab   |       |                |       |  |  |
| Ab        | 5.1Bab        | 3.2BCb  |       |                |       |  |  |
| 'Ab       | 3.9BCab       | 8.0ABa  |       |                |       |  |  |
| 5Aa       | ▼ 7.9Ba       | ▼11.9Ba |       |                |       |  |  |

## Hybrids, Environments, & Planting Dates (59,200 plants)

- Abnormalities result from **G** × **E** × **M** interactions  $\bullet$
- Despite low percentage of **abnormalities**  $\bullet$ (6.6%), significant effects detected
- Yields ranged from 82 to 356 Bu/Ac;  $\bullet$ hybrids with **more abnormalities**, lower yields
- Variable hybrid response to planting dates (+/-) ullet
- Hybrid selection and planting dates could help mitigate abnormal ears
- In most cases, abnormal ears had lower heights, suggesting primary ear loss as a possibility  $\bullet$





## FROM FIELD CONCERNS TO PLANT-LEVEL RESEARCH





## CONCLUSIONS





## Overriding Conclusions, 2016 through 2022 ------

- 1) Abnormal ears affect cornfields, it is essential to continue investigating the leading causes while identifying mitigation strategies
- 2) Abnormal ears decrease grain yields, damage depends on the frequency and severity of symptoms
- 3) The selection of resistant hybrids and appropriate management are critical for crop adaptation, mitigation, and managing unfavorable conditions
- 4) Plant morphological characteristics can help as diagnostic tools to differentiate plants with normal and abnormal ears
- 5) Abnormal ears must be understood as a result of interactions among genetics (G), environment (E), and management (M)



Ortez et al. (2022a; 2022b; 2022c)





## Importantly, results highlighted the need for more research...





- **Random spread**  $\bullet$
- Many unknowns
- Hard to replicate  $\bullet$
- **Combination of factors** lacksquare
- No control over weather, unless

greenhouse/growth chambers

# Want to learn more?

OSU.EDU

Help BuckeyeLink Map Find People Webmail Search Ohio State

## THE OHIO STATE UNIVERSITY

#### TROUBLESHOOTING ABNORMAL CORN EARS

#### HOME ABNORMALITIES - ABNORMAL EARS POSTER CREDITS

A corn ear has the potential for 750 to 1000 kernels and may weigh over a pound. However, the corn ears produced in a typical Corn Belt field will average about 450-500 kernels and weigh about 1/4 -1/2 lb. Corn ear size is influenced by cultural practices, especially seeding rates and soil fertility, as well as environmental conditions and soil moisture and temperatures. Corn ears have an even number of kernel rows that can range from 12 to 22 rows (usually about 14-18 rows). Row number is primarily determined by genetics whereas kernel number per row (ear length) is strongly influenced by growing conditions.



Field of Corn (with Osage Orange Trees) Located in Dublin, Ohio, by Malcolm Cochran. Dedicated October 30, 1994.

Access here: <a href="https://u.osu.edu/mastercorn/">https://u.osu.edu/mastercorn/</a>



#### Phase III

**Phase IV** 

#### Conclusions





Source: P. Thomison, OSU

Source: P. Thomison, OSU

#### Symptoms:

"Bouquet Ears" are characterized by multiple ears on a single ear shank (also referred to as Multiple Ears on a Single Ear Shank Syndrome or "MESS"). In some cases as many as five or six "side" ears may develop forming a "bouquet". Side ears may be well developed or may resemble <u>blunt ears</u> or severely arrested ears. Many probably failed to form kernels due to late silk emergence and lack of pollen.

...



Osler Ortez @OrtezCornCrops · Aug 23 Columbus, Ohio, 8/16/22:

This is what stress conditions can do to corn (sweetcorn this time!).

Temperature & drought stress noted for 3 consecutive days during ear size determination stages = BARBELL EARS.

Summary on this and other abnormal ears: doi.org/10.1002/agj2.2...





## ... Abnormal ears still affect cornfields, reducing productivity, underlying causes???

# Abnormal ears reported every year...

# Be prepared for more to come...

# **THANK YOU**

# **Osler Ortez Corn & Emerging Crops** ortez.5@osu.edu || (330) 263-9725



## **The Ohio State University**

COLLEGE OF FOOD, AGRICULTURAL, AND ENVIRONMENTAL SCIENCES

# Acknowledgements



















